Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration
نویسندگان
چکیده
The high regenerative capacity of adult skeletal muscle relies on a self-renewing depot of adult stem cells, termed muscle satellite cells (MSCs). Androgens, known mediators of overall body composition and specifically skeletal muscle mass, have been shown to regulate MSCs. The possible overlapping function of androgen regulation of muscle growth and MSC activation has not been carefully investigated with regards to muscle regeneration.Therefore, the aim of this study was to examine coinciding androgen-mediated genetic changes in an in vitro MSC model and clinically relevant in vivo models. A gene signature was established via microarray analysis for androgen-mediated MSC engagement and highlighted several markers including follistatin (FST), IGF-1, C-X-C chemokine receptor 4 (CXCR4), hepatocyte growth factor (HGF) and glucocorticoid receptor (GR). In an in vivo muscle atrophy model, androgen re-supplementation significantly increased muscle size and expression of IGF-1, FST, and HGF, while significantly decreasing expression of GR. Biphasic gene expression profiles over the 7-day re-supplementation period identified temporal androgen regulation of molecular targets involved in satellite cell engagement into myogenesis. In a muscle injury model, removal of androgens resulted in delayed muscle recovery and regeneration. Modifications in the androgen signaling gene signature, along with reduced Pax7 and MyoD expression, suggested that limited MSC activation and increased inflammation contributed to the delayed regeneration. However, enhanced MSC activation in the androgen-deplete mouse injury model was driven by an androgen receptor (AR) agonist. These results provide novel in vitro and in vivo evidence describing molecular targets of androgen signaling, while also increasing support for translational use of AR agonists in skeletal muscle recovery and regeneration.
منابع مشابه
Actin associated proteins function as androgen receptor coregulators: an implication of androgen receptor's roles in skeletal muscle.
This review of androgen receptor (AR) coregulators, which also function as actin-binding proteins, intends to establish the connection between actin cytoskeletal components and androgen signaling, especially in skeletal muscle. In cellular and animal models, androgen activated AR modulates myoblasts proliferation, promotes sexual dimorphic muscle development, and alters muscle fiber type. In th...
متن کاملApplications of Small Molecules in Muscle Tissue Engineering
Introduction: Skeletal muscles account for about 40% of the total body weight. Every year, hundreds of people lose at least part of their muscle tissue due to illness, war, and accidents. This can lead to disruption of activities such as breathing, movement, and social life. To this end, various therapeutic strategies such as medication therapy, cell therapy and tissue transplantation have been...
متن کاملREVIEWS Intracellular Signal for Skeletal Muscle Adaptation cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration
Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab 303: E1–E17, 2012. First published February 21, 2012; doi:10.1152/ajpendo.00555.2011.—Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement w...
متن کاملcAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. T...
متن کاملEstablishing a new animal model for muscle regeneration studies
Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system. Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2015